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Something Simple for Breakfast?

A thread of viscous 
uid falling on a surface



Coiling on a Stationary Surface

� 9 Steady coiling solution (helical wave)
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Not So Simple!
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What determines the frequency?

What happens if the surface is moving?



On Board

Stress linear in velocity gradients. Translation and rotation irrelevant

Viscous stress in simple shear

Viscous stress in axial extension

Mass conservation for a thread

Steady vertical fall solution - in�nite fall, �nite fall.

Bending



Fall onto a Moving Belt
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� Belt speedUb and fall height H are the main control parameters

� Let Uf be the `free-fall' speed

| speed if T = 0 after vertical fall through H



Steady Stretching Catenary Shapes for Ub & Uf

Experiments with Golden Syrup Chiu-Webster & Lister 2006

10 cm

18 cm/s 14 cm/s 10.5 7.5

Thread is in tension { catenaries with variable mass per unitlength



Equations for Steady Catenaries (with bending)

U(s)

Ub
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Model by centreline variables

T =
R

� 33 dA S =
R

� 13 dA

M =
R

x1� 33 dA

Rolling conditions on belt
Clamped conditions at nozzle

Geometry � 0= �; x 0= sin �; z 0= � cos� Massa2U = const:

Vertical force balance(T cos� � S sin� )0= �a 2�g

Horizontal force balance(T sin� + S cos� )0= 0

Moment balanceM 0= S

Resistance to stretchingT = 3��a 2U0

Resistance to bendingM = 3
4��a 4U� 0 8th-order ODEs



Steady Stretching Catenary Shapes for Ub & Uf

Very good agreement between simple theory and experiments

Heel

As Ub & Uf the shape develops a heel (to be continued: : :)



Motion in 3D for Coiling Etc. (no inertia for simplicity)

Shaper (s; t) Tangent d3 = r 0 and material d1; d2

Kinematics
Dr
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Mass conservation
Da2

Dt
= � (U 0)3a2

Forces & momentsT 0+ F = 0; M 0+ d3 ^ T + G = 0

Constitutive eqnsM = 1
4�a 4� (3I � d3d3) � ! 0 T3 = 3�a 2� (U 0)3

for the two bending directions, twisting and stretching

� System for velocities and angular velocities is a 12th orderPDE

The kinematics of position, angle, radius and arclength

adds another 8 (or 9) orders!



The Four Regimes of Steady Coiling Ribe et al. 2006

Numerical solutions show four regimes.
Backed by experiments. Explained by scaling arguments.
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� Viscous: global buckling (like toothpaste)
� Gravitational: balance gravity and bending stresses in coil
� Inertial: balance inertia and bending stresses in coil
� Inertio-Gravitational: (see next slide)



Oscillations of a Hanging String

Vertical hanging string, uniform radiusa, negligible sti�ness

Vertical force balanceT0= �a 2�g ) linear variation of tension

Small horizontal displacements(Tx0)0= �a 2� •x

Seek eigenmodesx = X (s)ei 
 t

d
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X; X (H ) = 0 ; sX 0 ! 0 at 0
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and by Coriolis e�ects if there is velocityU along string
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Frequencies modi�ed by nonuniform radius

and by Coriolis e�ects if there is velocityU along string

IG regime is due to resonanceof coiling with the pendulum modes



Back to the Dragged Thread

� There are three basic regimes (and steady solutions in each):

Dragged catenary Transitional Heel Compressional Heel

Fx
Fz

Ub > U f Ub � Uf Ub < U f

� Expect compressional heel to be unstable to buckling

� Linear perturbations to the planar basic state decouple into

a 12th order out-of-plane system (bending & twisting)

a 9th order in-plane system (bending & stetching)

� At leading order, transitional heel becomes unstable not when

Fz = 0 but when Fx = 0. Not buckling but overbalancing!



Onset of Oscillations for Ub = Uf � O(� 1=2)

Thread becomes unstable to sinusoidal meanders

H = 8:5cm

Ub = 4:0cm=s

(

Onset is a Hopf bifurcation

Onset point and frequency can be

calculated

numerically (Ribe, Lister & C-W 2006)

asymptotically (Blount & Lister 2011)
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Further Bifurcations for Ub . Uf

Braiding
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Further Bifurcations for Ub . Uf

Coiling { the obvious result asUb ! 0
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Further Bifurcations for Ub . Uf

Figure-of-eight
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Patterns from a Fluid-Mechanical Sewing Machine



Regime Diagrams

The control space(H; Ub) can be explored systematically
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Origins of Complexity

� Unsteadiness driven by overbalancing of the compressive heel

� Weak restoring by de
ection of the tail

� also get resonances with pendulum modes in the tail

� also self-intersection on belt can lock/disrupt patterns

This is a beautiful system to show that the physics of viscous
ow can

be fun!

This movie by Stephen

Morris is on U-Tube.

The belt speed decreases

slowly, keeping everything

else constant.
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