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I suppose for many of us, it was a memorable event in our lives when

we were told, or discovered, that sum of the interior angles of a

triangle, no matter of what shape, must add up to 180 degrees.



Later we will have been shown a proof, and possibly told that this is

a classic example of the intellectual heritiage of the Greeks: imper-

ishable truths about the world that only mathematics can provide.

However a proof is only as good as its assumptions and its utility and

depends on identifying in the real world objects corresponding to the

abstract entites manipulated in the proof.

In the case of the triangle law, the mathematical assumption is that

the edges of the triangle are straight lines as described by Euclidean

geometry and the physical assumption that these straightlines may

be identified with the paths of light rays.



The crucial assumption needed to prove the triangle law is Euclid’s

fifth, the so-called parallel axiom. A convenient formulation is as

follows

Consider an isosceles triangle ABC whose sides AC and BC are equal.

As the point C recedes to infinity the angles CAB = CBA tend to π
2,

independently of the distance AB = 2r.

However around 1829 Lobachevsky and Bolyai realised that this as-

sumption can be replaced by the assumption that the angle CAB,

called the angle of parallelism Π(r) depends on the distance r.



In fact they constructed an alternative Non-Euclidean Geometry in

which the idea of congruent figures still makes sense but for which

sinΠ =
1

cosh r
R

. (1)

, where R is called the radius of curvature of Lobachevsky or Hyper-

bolic space.

For small r we obtain the Euclidean value π
2 but in general for Lobachevsky

space the angle of parallelism is less than π
2.

As a consequence in Lobachevsky space the angular sum of a triangle

is less than 180 degrees.



Lobachevsky



Of course the assumption that C may recede all the way to infinity

can also be dropped, and this gives rise to spherical, or elliptic space

in which the angular sum of a triangle is greater than 180 degrees

Thus we have three (simply connected) congruence geometries char-

acterised by by a radius R and for which the angle sum of a triangle

turns out to equal, up to a sign, the area of the triangle in units of

R2.

∠ACB + ∠CBA+ ∠BAC = π ±
Area(ABC)

R2
(2)

Throughout the nineteenth century there were attempts by some as-

tronomers to measure, by means of light rays, the sign and magnitude



of “space” , assumed to be static and of constant curvature, by using

the method of parallax.



Suppose that A and B are the positions of the earth on its orbit around

the sun at times which differ by six months. If a star is situated at S

somewhere on the line OC, where O is the midpoint of the side AB,

and if at C there is some much more distant star, then the angles CAS,

SAB and CBS and SBA may be measured. One wants, to calculate

the distance 0S, the true parallax, that is the angle p = AS0. What

one may measure, are pt = π
2 − SA0, by a transit circle say, and the

angle pb = CAS as did Bessel by comparing the position of the star

S with that of a distant star C.



Parallax geometry

S

C

A B
O

r r



Euclidean geometry implies that

CAS + SAB =
π

2
⇒ pt = pb . (3)

But in Hyperbolic geometry

pt − pb =
π

2
− Π(r) ≈

R

r
, (4)

Thus a measurement of pt− pb will allow an estimate of the radius of

curvature R.



In the nineteenth century, it was customary to refer to pt, as ‘the

parallax ’or more generally 1
2(π − SAO − SBO) was called the annual

parallax and indeed before the work of Bessel on 61 Cygni these were

the only parallaxes which were measured. Lobachevsky pointed out

in 1829 that the angle pt is bounded below, no matter how far away

a star is, it follows from (1) that it cannot be less than

pt ≥ sin−1(tanh r) . (5)

The smallest measured parallax then gives a lower bound for the radius

of curvature. Using (an inaccurate) value for the parallax of Sirius

(1.24 as, 4 times too large) Lobachevsky obtained a lower bound of

1.66 × 105 au.



A lower bound for the measured parallax pt may still hold if the cur-

vature varies in space. It only requires (see later) that the integral of

the curvature over triangle ASO be negative no matter how distant

the star at S is.

In the case of positive curvature, one finds that the measured parallax

pt can become negative , and this was widely regarded as a “smoking

gun” for space curvature.

It is widely believed that Gauss checked the angle sum formula as part

of his geodetic duties at Göttingen using as vertices the peaks of the

Brocken, Hoher Hagen and Inselberg, but this has been disputed.



In the early 1880’s Ball reported

that measurements then were in-

sufficient to decide the matter.



In 1889 Calinon suggested that the radius could vary with time. By

the 1890’s the Pragmatic Philosopher Charles Sanders Peirce, son

of the Harvard astronomer Benjamin Peirce somewhat optimistically

wrote

...our grandchildren will surely know whether the three angles

of a triangle are greater or less than 180◦ – that they are

exactly that amount is what nobody can ever be justified in

concluding.



He then had available 40 measured parallaxes, i.e. measurements of

(π − SAO − SBO) two of which were negative. They were Aridad

(α Cygni) of magnitude 1.5 and parallax −0.082as and Piazzi III 422,

with magnitude 7.75 and parallax measured by Ball of −0.O45as Peirce

ascribed these to observational error and concluded that the parallax

of the furthest star measured lay in the interval (−0.05as,0.15as)

In 1900 Schwarzschild, obtained the lower bound of 4 × 106 au..



Schwarzschild looking forward to

the Einstein Static Universe .



A Lower bound for the parallax.

S

A B
T

p_s

Schwarzschild considered a star T whose direction is along the diam-

eter AOB, and calls ps = 1
2(π−TAS−TBS) the parallax. If the length

of OS is d, he claims that with sufficient accuracy

coth
d

R
= ps

R

r
. (6)



Thus the parallax is bounded below ps >
r
R
. But at that time many

stars had measured parallaxes less than .05 as, whence his lower bound

for the radius of curvature.

Sommerville , writing in 1914 considered the case of α Centauri for

which pt = 1.14 as and pb = 0.76±0.01 as giving the radius of curvature

no less than 5.5 × 105 au.



These early geometrical speculations were revolutionised in 1916 with

the advent of Einstein’s Theory of General Relativity. According

to this theory both space and time are curved and depend on the

distribution of matter. Hoever he retained the assumption that light

rays follow geodesics, but now they are null-geodesics of our four-

dimensional spacetime.

By 1917 Einstein produced the Einstein Static universe in which space

is positively curved and of approximate radius 1027 cm. This was

essentially the same as Schwarzschild’s 1900 model.



Robertson, writing in 1949, well after the advent of relativistic cosmol-

ogy, reviewed Schwarzschild’s work and comments that while Schwarzschild

obtained lower bounds of 1600 or 64 light years depending upon

whether the curvature was positive or negative respectively, by 1949

observations of galaxies stretched to over 500 million light years.

By that time, following the theoretical work of Friedman and Lemaitre,

and the observational work of Hubble, it was widely accepted that the

universe is not static, but rather the distance between galaxies is in-

creasing with time.

ds24 = −dt2 + a2(t)gijdx
idxj (7)

where gijdx
idxj is the 3- metric or line element of one of the three

congruence geometries. This fits well with Calinon’s 1889 specula-

tion.



Actually, because the motion of light rays or null geodesics for two

confomally related metrics are the same, the angular sum of a tri-

angle in a time dependent Friedman-Lemaitre model is the same as

in a static model with the “space” given by the same congruence

geometry.

ds24 = a2(t){−dη2 + gijdx
idxj} dη =

dt

a(t)
(8)

Present day observations such as WMAP, using the 3 K Cosmic Mi-

crowave Background indicate that the universe is spatially flat. In

other words the angle sum of an extremely large triangle is indeed

180 degrees as we were taught at elementary school, however...



In 1911 Einstein realised that the paths of light rays can become

bent as they pass through gravitational fields and in 1919 Eddington

showed that light from distant stars grazing the sun’s disc during a

solar eclipse are indeed bent by the amount that General Relativity

predicts

δ ≈
4GM

c2b
(9)

where b is the impact parameter.



More recently astronomers have observed many gravitational lenses.

The first lensed quasar observed, Q0957+561 in 1979, has two im-

ages separated by 6.3 as. The largest observed separation so far is

SDSSJ1004+4112 which has a separation of 14.62 as. Thus this

effect is not small. Moreover, the two ‘dark age’galaxies with the

largest observed redshifts to date, one with Z=10 and one with z=7

both owe their observation here on earth to gravitational lensing by

an intervening galaxy cluster (Abell 1835 or Abell 2218 respectively)

to provide the necessary magnification. More speculatively, cosmic

strings might bring about comparable effects.



This suggest that the relevant curvature near a gravitating mass is

positive, but this is not correct In fact we shall show later that in

plane passing through the sun the relevant (Guassian) curvature is

given by

K = −
2GM

c2r3
(1 −

3GM

2c2r
) (10)

which is negative.

Shortly, we shall use the Gauss-Bonnet Theorem to resolve this para-

dox, but before doing so we need a little more (optical) geometry.



We assume that we have a static metric

ds24 = −|g00|dt
2 + hijdx

idxj . (11)

the spatial projections of null geodesics are, by Fermat’s principle of

least time, geodesics of the optical or Fermat 3-metric

ds23 =
1

|g00|
hijdx

idxj = fijdx
idxj . (12)

Angles measured using the optical metric coincide with those mea-

sured using the physical metric.

It is the curvature of the optical metric which is important for the

angle sum of an optical triangle.



If |g00| = e2U = constant, the Newtonian potential U is spatially

constant as happened in the previous cases, the spatial metric and

the optical metric coincude. If one likes, one may think of |g00|
−1 as

analogous to the refractive index of space.



Consider now geodesics lying in an oriented two-surface Σ, one may

apply the Gauss-Bonnet theorem to obtain useful information about

angle sums of geodesic triangles. Let D ⊂ Σ be domain with Euler

number χ(D) and a not necessarily connected boundary ∂D, pos-

sibly with corners at which the tangent vector of the boundary is

discontinuous. If K is the Gauss curvature of D, such that Rijkl =

K(fikfjl−filfjk) and k the curvature of ∂D, θi the angle through which

the tangent turns inwards at the i’th corner then

∫

D
KdA+

∮

∂D
kdl+

∑

i

θi = 2πχ(D) . (13)



Three exterior angles
1

2

3



The Schwarzschild 4-metric is (with units such that G=c=1)

ds24 = −(1 −
2M

r
)dt2 +

dr2

1 − 2M
r

+ r2(dθ2 + sin2 θdφ2) (14)

The optical 3-metric is

ds23 =
dr2

(1 − 2M
r

)2
+

r2

1 − 2M
r

(dθ2 + sin2 θdφ2) (15)



For a single light ray we may, witout loss of generality, restrict at-

tention to equatorial plane. For more than one geodesic, this is a

simplifying assumption.

The optical metric reduces to

ds2 =
dr2

(1 − 2M
r

)2
+

r2

(1 − 2M
r

)
dφ2 . (16)

Note that the radial optical distance is

dr

(1 − 2M
r

)
= dr⋆, (17)

where r⋆ = r−2M+2M ln( r
2M −1) is often called the Regge-Wheeler

tortoise coordinate.



There is a circular geodesic at r = 3M and the horizon r = 2M is at

an infinite optical distance inside this at r⋆ = ∞.

The Gauss curvature

K = −
2M

r3
(1 −

3M

2r
) (18)

is everywhere negative. It falls to zero like −2M
r3

at infinity but near the

horizon at which the metric has constant negative Gauss-curvature

− 1
(4M)2

.



The fact that the Gauss curvature is negative looks on the face of

it rather paradoxical, since one usually thinks of gravitational fields

as focussing a bundle of light rays. However, a spherical vacuum

gravitational field does not quite act in that way. The equation of

geodesic deviation governing the separation η of two neighbouring

light rays in the equatorial plane is

d2η

dt2
+Kη = 0 . (19)

Thus neighbouring light rays actually diverge. The focussing effect

of a gravitational lens is not, as we shall see shortly, not a local but

rather a global , indeed even topological effect.



One might wonder whether the full 3-dimensional curvature 3Rijkl of

the optical metric has all of its sectional curvatures negative, but this

cannot be. The sectional curvature of a surface is related to the full

curvature tensor by

3Rijkl = K(fikfjl − f1lfjk) −KikKjl +Kilgjk , (20)

where Kij is the second fundamental form or extrinsic curvature of

the surface. For a totally geodesic surface Kij = 0, and the two

sectional curvatures agree. One such totally geodesic surface is the

equatorial plane for which, as we have seen, K is negative. Another

totally geodesic submanifold is the sphere at r = 3M for which K is

obviously positive.



The negativity of the Gauss curvature of the optical metric in the

equatorial plane is a fairly universal property of black hole metrics.

To see this we note that if

ds2 = dρ2 + l2(ρ)dφ2 , (21)

then

K = −
1

l

d2l

dρ2
. (22)

Any metric with the same qualitative features as the Schwarzschild

metric, as long as it has a positive mass, will have K negative. Indeed

this fact might be made the basis of excluding negative mass objects

observationally.



The optical wormhole

r=3M

r* goues to infinity
Asymptotically hyperbolic



A simple calculation shows the integral over the region outside the

circular geodesic at r = 3M is
∫

r≥3M
KdA = −2π . (23)



Let us now apply the Gauss-Bonnet theorem to various cases.

(i) Geodesic triangle ∆ not containing the the region inside r = 3M .

In this case χ(∆) = 1. If α, β, γ are the necessarily positive internal

angles, we find that the angle sum is less that π,

α+ β + γ = π+
∫

∆
KdA < π . (24)

The angle sum is less than 180 de-

grees



(ii) Geodesic di-gon S not containing the the region inside r = 3M .

In this case χ(S) = 1. If α and β are the internal angles,

α+ β =

∫

S
KdA < 0 . (25)

In other words two such geodesics cannot intersect twice if the hole is

not inside the di-gon. Neither, in these circumstances, can a geodesic

intersect itself because

This is not allowed



(iii) Geodesic loop T not containing the the region inside r = 3M . In

this case χ(T) = 1 and one finds that if if α is the internal angles,the

α = −π+
∫

T
KdA < 0 , (26)

which is plainly impossible.

This might seem counter-intuitive in the light of one’s usual intuition

about light bending, but this feeling is dispelled by considering cases

in which the domain D has two boundary components, the second,

inner, one being the circular geodesic at r = 3M . The domain with

the circle removed has the topology of an annulus and thus its Euler

number vanishes.



(iv) Geodesic triangle with hole ∆o enclosing the geodesic circle at

r = 3M and containing the with the region the region inside r = 3M

removed.

If α, β, γ are the internal angles, we find that the angle sum is greater

than π,

α+ β + γ = 3π+

∫

∆0

KdA < π ≥ π . (27)



The angle sum exceeds 180 degrees

a

b

c

Similarly

(v) Geodesic di-gon S0 n containing the the region inside r = 3M . In

this case χ(S0) = 0 and one finds that if If α and β are the internal

angles, then

α+ β = 2π+
∫

S0

KdA > 0 . (28)



In other words two such geodesics may intersect twice if the hole is

inside the di-gon. Moreover, in these circumstances, a geodesic can

intersect itself because

This is allowed

(vi) Geodesic loop T0 containing the the region inside r = 3M . In this



case χ(T0) = 1 and if If α is the internal angle, we find that

α = π+

∫

T0

KdA , (29)

which is plainly possible.

Similar results may be obtained by considering geodesics inside r =

3M , but now domain must not contain the horizon, otherwise
∫

DKdA

will diverge. Near the horizon the geometry is that of Lobachebsky

space with constant curvature − 1
4M .

In fact this is a general feature of the optical geometry in the neigh-

bourhood of a non-degenerate static event horizon.

(vii) Deflection. We consider a geodesic line with no self-intersection

which at large distances, is radial. The angle between the asymptotes



is δ, with the convention that it is positive if the light ray is bent

towards the hole. The geodesic decomposes the region inside two

circles, one of very large radius and the other at r = 3M into two

domains D± whose common boundary component consists of the

geodesic, which intersects the circle at infinity at right angles. We

chose D+ to enclose the hole so it has an inner boundary component

at r = 3M and a portion of the circle at infinity through which the

angle φ has range π − δ. Clearly D+ is topologically an annulus and

so it has vanishing Euler number, χ(D+) = 0. The other domain has

Euler number χ(D−) = 1, and φ ranges through π + δ. The Gauss-

Bonnet formula applied to D± acquires a contribution from the two

corners and the circle at infinity. The result is

δ = −
∫

D−

KdA > 0. (30)



Light bending

D^−

D^+

For a geodesic whose distance of closest approach is very large,
we may estimate this integral by approximating the geodesic as the
straight line r = b

sinφ. The impact parameter to this lowest non-trivial
order coincides with the distance of nearest approach and equals b.
To the necessary accuracy

KdA ≈ −
2M

r3
rdrdφ . (31)



The domain of integration D− is, with sufficient accuracy over r ≥
b

sinφ, 0 ≤ φ ≤ 2π. A simple calculation gives the classic result

δ =
4M

b
. (32)

Approximate light deflection

r

b

The same method works for any black hole metric, not just Schwarzschild,



and shows that the Gauss-Bonnet method does not just give qualita-

tive results, but it can be made into a quantitative tool.



Some future missions may make these and analogous calculations of

more than pruely academic interest.

The fothcoming GAIA mission, is the next step beyond HIPPARCOS,

and will attain accuracies of the order of pico-radians. For parallax

measurements median errors of 4µas for 10’th magnitude objects and

160µas for those at 20’th magnitude are expected

The satellite will orbit at the second Lagrange point L2 and with

these accuracies the gravitational deflection due to planets may well

be detectable..



Gravitational light deflection measurements are also the aim of the

proposed LATOR Mission in which two satellites and the space station

will form the vertices of a triangle. Three edge-lengths, a, b, c will be

measured by laser timing and the angle A between light rays coming

from the two satellites and arriving at the space station will also be

measured.



LATOR



If spacetime were flat these quantities would satisfy the usual cosine

formula. In the presence of curvature one gets a different relation.

For example if the curvature was constant and negative, one would

get the hyperbolic version of the formula of Albategnius

cosh a = cosh b cosh c− sinh b sinh c cosA , (33)

where a, b, c are measured in curvature units.



Al-Battani



Of course the curvature K is not constant , but it is negative. In fact

we shall show later that in plane passing through the sun the relevant

curvature is

K = −
2M

r3
(1 −

3M

2r
) (34)

and can be be made the basis of an approximate formula for the size

of the effect that LATOR is intended to measure.



However, despite the fact that it is an elementary exercise to reduce

to quadratures the motion of light rays in the Schwarzschild metric,

it would seem to be an extremely challenging task to produce an

analytic formula for analogue of the cosine formula in general. An

approximate expression for the angular sum of a large triangle, or

indeed any polygon will be given later.



The accuracy anticipated for LATOR would allow a measurement of

the second order light deflection by the sun. This is 3.5µas.

I will conclude by mentioning some outstanding, and, in principle,

elementary problems involving light triangles near a black hole.



Post-Newtonian Angular sum of a large polygon surrounding the sun.

The Gauss-Bonnet theorem tells one that a geodesic n-gon with in-

ternal angles αi, i = 12, . . . n enclosing the hole has angular sum

∑

i

αi = (n− 2) −
∫

D′
KdA , (35)

the integral being taken over the region D′ outside the triangle. We

perform the integral by dealing with each of the n sectors Si subtended

by the sides separately and then adding the results since

D′ = ∪iSi . (36)

We choose coordinates so that the radial lines φ = φi and φ = −φ′i
pass through the ends of the sides. If the geodesic polygon is large,



one may approximate its i’th side by a straight line

r =
bi

cosφ
, −φi ≤ φ ≤ φ′i , (37)

with 0 ≤ φi, φ
′
i ≤ π and where bi is its distance of closest approach to

the origin. The integral over the i’the sector Si may be evaluated as

was done above for the scattering and one finds

∫

Si
KdA = −

2M

bi
(sin

φi

2
+ sin

φ′i
2

) . (38)

Adding the contributions from the n-sectors gives

∑

i

αi = (n− 2)π+ 2M
∑

i

(sin
φi

2
+ sin

φ′i
2

)
1

bi
. (39)

For example, for n = 3, the angle sum is indeed greater than π. The



n quantities φi, φ
′
i, bi are of course not independent. For example

∑

i

(φi + φ′i) = 2π. (40)



Post-Newtonian Angle sum of a triangle not enclosing the sun

Suppose that side 3 is closest to the sun, such that sides 1 and 3

intersect at a vertex point on the other side of the 3rd side from the

sun. Suppose, as before, that Si is the part of the sector subtended

by the i’th side which lies beyond the i’th side.

The angle sum will be

α+ β + γ = π+

∫

S3

KdA−
∫

S1

KdA−
∫

S2

KdA . (41)

Each of the three integrals in (41) is given by an expression of the

form (38).



Exact Analytic Results

If u = 1
r
, the orbit satisfies

d2u

dφ2
+ u = 3Mu2 ⇒ (

du

dφ
)2 = b−2 − u2 + 2Mu3 − 2Mb−3 , (42)

where b is the radius of nearest approach. The angle Θ between the

orbit and the radial direction is given by

tanΘ =
1

r

dr

dφ

1
√

1 − 2M
r

. (43)

Thus

tanΘ =
1

√

1 − 2M
r

√

r2

b2
− 1 − 2

M

r
(
r3

b3
− 1) . (44)



Note that, as defined, Θ is positive and vanishes at a turning point.

Now we may evaluate (44) at the two ends of the i’th geodesic side.

Thus

tanΘi =
1

√

1 − 2M
ri

√

√

√

√

r2i
b2i

− 1 −
M

ri
(
r3i
b3i

− 1) , (45)

tanΘ′
i =

1
√

1 − 2M
r′i

√

√

√

√

(r′i)
2

b2i
− 1 − 2

M

r′i
(
(r′i)

3

b3i
− 1) . (46)

Now the angular sum is

nπ −
∑

i

Θi + Θ′
i+1 . (47)



Of course not all the radial radii are independent. Obviously

ri = r′i+1 , etc . (48)

The optical lengths of the sides ti , as would be measured by laser

timing, and the angles φi and φ′i are given by integrals which, in

general, can only be expressed in terms of elliptic functions. Thus

φi =
∫ ri

bi

dr

r2
1

√

b−2
i − r−2 + 2Mr−3 − 2Mb−3

i

(49)

φ′i =
∫ r′i

bi

dr

r2
1

√

b−2
i − r−2 + 2Mr−3 − 2Mb−3

i

(50)



and

ti =

∫ ri

bi

dr

(1 − 2M
r

)bi

√

1 − 2M
bi

1
√

b−2
i − r−2 + 2Mr−3 − 2Mb−3

i

, (51)

+

∫ r′i

bi

dr

(1 − 2M
r

)bi

√

1 − 2M
bi

1
√

b−2
i − r−2 + 2Mr−3 − 2Mb−3

i

.(52)

In the Post-Newtonian approximation, this formula should reduce to

the Shapiro time delay formula. Evidently however, the various quan-

tities are only rather implicitly related ∗. Unfortunately, unless there

are some miraculous relations among elliptic functions, there is no

obvious way of getting out less implicit relations, even just to Post-

Post-Newtonian order, as required by the LATOR project.

∗the orbits are given by elliptic functions



Elliptic functions

Geodesics in the Schwarzschild metric may be integrated using elliptic

functions. In the case of null geodesics one has

M

2r
−

1

12
= p(φ+ constant), (53)

where Weirstrass’s function p satisfies

p′
2

= 4p3 − g2p− g3 , (54)

with

g2 =
1

12
, g3 =

1

216
−
M2

4b2
(1 −

2M

b
) . (55)



Exact solutions

One may check that

u =
1

3M
−

1

M

1

coshφ+ 1
(56)

and

u =
1

M

1

cosφ+ 1
(57)

are exact solutions. The former(56) starts at infinity at φ = cosh−1(2)
and moves inwards, spirally around the circualr orbit at r = 3M .

In fact (56) is not a Weierstrass function but if one adds iπ2 to the
argument φ one gets

u =
1

3M
+

1

M

1

coshφ− 1
, (58)



which is a Weierstrass function. This orbit starts from r = 0 at φ = 0

and moves outwards ultimately endlessly approaching the circle at

r = 3M .



Addition Formulae The addition formula for Weierstrass elliptic func-

tions states that (see Whittaker and Watson page 441)

4(p(x) + p(y) + p(x+ y)) = (
p′(x) − p′(y)

p(x) − p(y)
)2 . (59)

Thus

(
u′(φ1) − u′(φ2)

u(φ1) − u(φ2)
)2 = 2M(u(φ1) + u(φ2) + u(φ1 + φ2)) − 1 . (60)

Define an angle ψ by

tanψ =
dr

rdφ
. (61)



Clearly ψ is the complement of the angle between the curve and the

radial direction if we use Euclidean geometry rather than the correct

geometry. Suppose r1 = r(φ1), r12 = r(φ+φ2) etc, then

(r2 tanψ1 − r1 tanψ2)
2 = (r1 − r2)

2(2M(
1

r1
+

1

r2
+

1

r12
) − 1) (62)

For thus orbits which allow u to get very small, for example those

which always remain outside r = 6M , the right handside of (62)

is negative and so they cannot be described by a real Weierstrass

function of a real argument. For those orbits which which always lie

inside r = 3M , the right handside of (62) is positive, and they do

satisfy the addition formula. In particular this applies to the simple

explict solution (58).



Conclusions The question: what is the angle sum of triangle turns

out to be more involved than it at first appears. At the scale of the

universe as a whole, space is Euclidean, and the answer is 180 degrees

after all. Near gravitating bodies for a triangle which does not enclose

the gravitating centre it is less than 180 degrees but for a triangle

which encloses the gravitating centre it is greater than 180 degrees

despite the fact that the (optical) curvature is everwhere negative.

The resolution of this paradox involves a simple topological fact.

These seemingly purely academic questions have important impli-

catins for some upcoming and projected space missions.


